Decision Analyses for Groundwater Remediation

Velimir V. Vesselinov, Daniel O'Malley, Danny Katzman

Los Alamos National Laboratory

Waste Management Symposium, March 7, 2017 LA-UR-17-21909

Decision Analyses

BIG-D

LANL Chromium site

BIG-DT Analysis

MADS

Decision analyses for Groundwater Remediation

- Robust and scientifically defensible decision analyses are critical for groundwater remediation
- Groundwater contamination is a significant national and international problem
- US National Research Council (NRC) recently estimated the liabilities associated with groundwater contamination in the US at over \$100 billion
- US NRC also reports that over "90% of court mandated groundwater remediations fail"
 - We must perform better modeling and make better decisions
- Frequently these failures are due to "unanticipated complexities"
 - We must perform robust quantification of uncertainties impacting the remedial decisions

Challenges

- Scales
- Uncertainties

Decision Analyses

BIG-DT

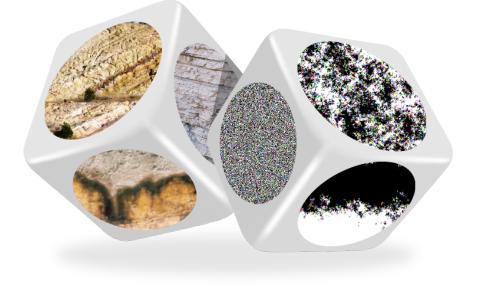
LANL Chromium site

Challenges: scales

- Subsurface contaminant plumes are spread over the kilometer scale
 - Models must predict contaminant behavior at field scales
- Contaminant behavior is driven by processes at pore scales
 - Models must account for processes at pore scales
- We cannot perform even a single model run that accounts for all processes at the field and pore scales
 - Models must be capable to capture the most important processes: e.g., pore-scale mixing and field-scale spreading (dispersion)
- Uncertainties are present at different scales
 - Robust decision analyses tools are needed that would need to perform numerous model runs (high-performance computing)

Challenges: Probabilistic Uncertainties

Decision Analyses


BIG-DT

LANL Chromium site

BIG-DT Analysis

MADS

Challenges: Non-probabilistic Uncertainties

Decision Analyses

BIG-DT

LANL Chromium site

 Probabilistic methods work very well for dice-rolling predictions

Decision Analyses

BIG-DT

LANL Chromium site

- Probabilistic methods work very well for dice-rolling predictions
- However, many environmental management uncertainties cannot be represented probabilistically

- Probabilistic methods work very well for dice-rolling predictions
- However, many environmental management uncertainties cannot be represented probabilistically
- For example, geologic heterogeneity is typically unknown (left die)

Decision Analyses

BIG-D

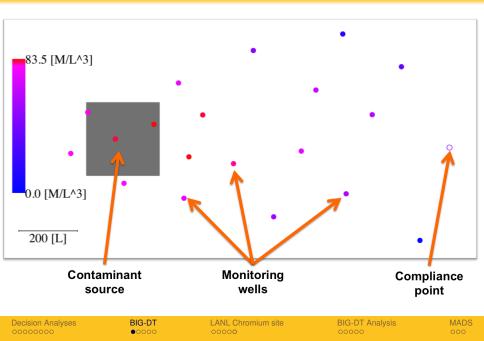
LANL Chromium site

- Probabilistic methods work very well for dice-rolling predictions
- However, many environmental management uncertainties cannot be represented probabilistically
- For example, geologic heterogeneity is typically unknown (left die)
- We also do not know which model of heterogeneity is representative (right die), but we must choose a single representative model

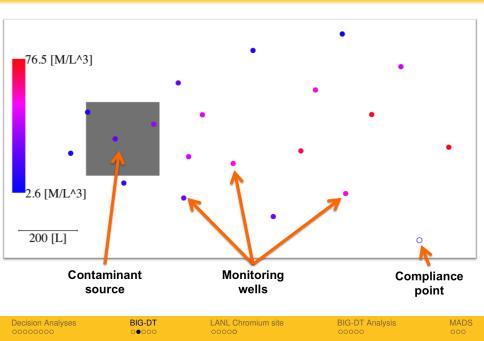
- Probabilistic methods work very well for dice-rolling predictions
- However, many environmental management uncertainties cannot be represented probabilistically
- For example, geologic heterogeneity is typically unknown (left die)
- We also do not know which model of heterogeneity is representative (right die), but we must choose a single representative model conditioned on the available site data
- We also do not know what all the sides of the dice look like, and how many sides there are

- Probabilistic methods work very well for dice-rolling predictions
- However, many environmental management uncertainties cannot be represented probabilistically
- For example, geologic heterogeneity is typically unknown (left die)
- We also do not know which model of heterogeneity is representative (right die), but we must choose a single representative model conditioned on the available site data
- We also do not know what all the sides of the dice look like, and how many sides there are
- Therefore, we cannot enumerate all possible outcomes

- Probabilistic methods work very well for dice-rolling predictions
- However, many environmental management uncertainties cannot be represented probabilistically
- For example, geologic heterogeneity is typically unknown (left die)
- We also do not know which model of heterogeneity is representative (right die), but we must choose a single representative model conditioned on the available site data
- We also do not know what all the sides of the dice look like, and how many sides there are
- Therefore, we cannot enumerate all possible outcomes
- All these issues make purely probabilistic (Bayesian) analyses flawed for many environmental-management problems (for example, using GoldSim)


Decision Analyses

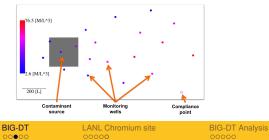
LANL Chromium site


- Many uncertainties at various scales
 - Model uncertainties (conceptualization and model implementation)
 - Parameter uncertainties
 - Data uncertainties (measurement errors)
 - Uncertainties in the performance of the engineered environmental management system
- All of these uncertainties can have both:
 - probabilistic components, and
 - non-probabilistic components
- We have developed a novel methodology and advanced computational tools that can address probabilistic and non-probabilistic uncertainties
- BIG-DT: Bayesian-Information Gap Decision Theory
- MADS: http://mads.lanl.gov

- Scales: We have developed novel modeling tools accounting for small-scale processes in large-scale models
- Uncertainties: We have developed novel decision analysis tools (Bayesian-Information Gap Decision Theory/MADS)

BIG-DT contaminant remediation problem: Scenario 1

BIG-DT contaminant remediation problem: Scenario 2



BIG-DT contaminant remediation problem: knowns/unknowns

Known:

Decision Analyses

- 10 annual concentration observations at 19 wells (190 in total)
- Location of the compliance point
- Estimated (probabilistic uncertainties):
 - location, size, contaminant mass flux at the source
 - ► aquifer flow properties (groundwater flow direction, magnitude, etc.)
 - aquifer transport properties (porosity, dispersivity, etc.)
- Unknown (non-probabilistic uncertainties):
 - geochemical reaction rate (natural/enhanced)
 - contaminant dispersion mechanism: classical (Fickian) or anomalous (non-Fickian)

To Act or Not to Act?

Decision Analyses

BIG-DT ○○○●○ LANL Chromium site

► To Act or Not to Act? That is the Question.

Decision Analyses

BIG-DT ○○○●○ LANL Chromium site

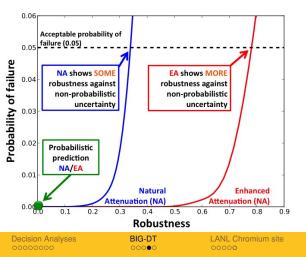
- ► To Act or Not to Act? That is the Question.
 - Act = Perform Enhanced Attenuation (EA)

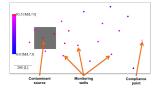
Decision Analyses

BIG-DT

LANL Chromium site

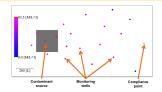
- ► To Act or Not to Act? That is the Question.
 - Act = Perform Enhanced Attenuation (EA)
 - Not to Act = Natural Attenuation (NA)

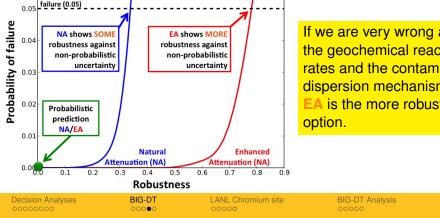

Decision Analyses


BIG-DT

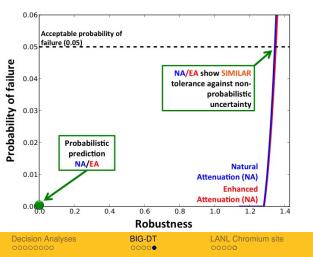
LANL Chromium site

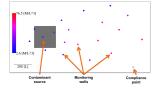
- ► To Act or Not to Act? That is the Question.
 - Act = Perform Enhanced Attenuation (EA)
 - Not to Act = Natural Attenuation (NA)
- To Act is the Answer



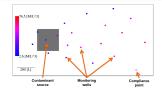

- To Act or Not to Act? That is the Question.
 - Act = Perform Enhanced Attenuation (EA)
 - Not to Act = Natural Attenuation (NA)
- To Act is the Answer

Acceptable probability of

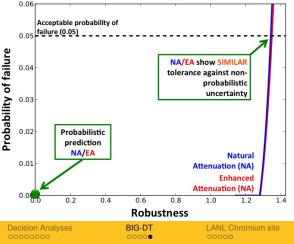

0.06



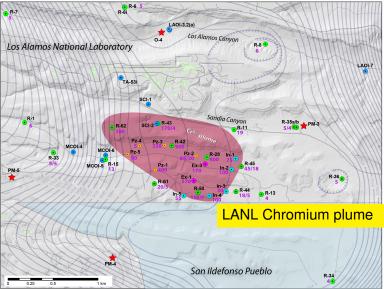
If we are very wrong about the geochemical reaction rates and the contaminant dispersion mechanisms, EA is the more robust option.



- To Act or Not to Act? That is the Question.
 - Act = Perform Enhanced Attenuation (EA)
 - Not to Act = Natural Attenuation (NA)
- Not To Act is the Answer



- ► To Act or Not to Act? That is the Question.
 - Act = Perform Enhanced Attenuation (EA)
 - Not to Act = Natural Attenuation (NA)
- Not To Act is the Answer



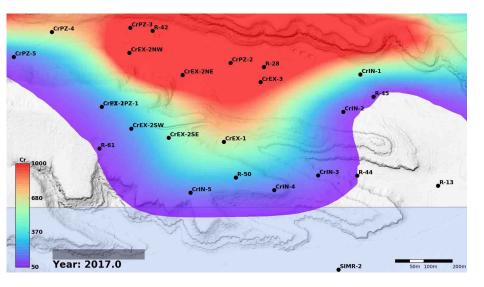
Even if we are very wrong about the geochemical reaction rates and the contaminant dispersion mechanisms, both NA and EA provide similar results.

LANL Chromium site

PM-5	MCOI-5 R-15	Pz-1 Ex-3 In-2 R-45 45/18	S. Par
		R-61 20/5 In-5 55 0 In-4 0 R-74 18/5	R-13
A.	HALL S	LANL	Chromiu
A A A A A A A A A A A A A A A A A A A		John Stand	
0 0.25 0.5	PM-4	San Ildefonso Pueb	lo
Analyses	BIG-DT	LANL Chromium site	BIG-DT

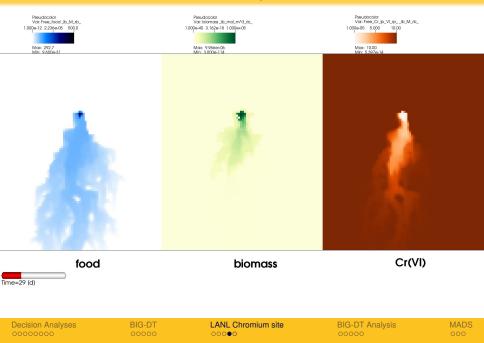
Decision Analyses	
0000000	

00000

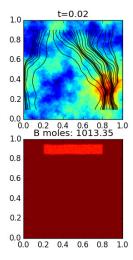

T Analysis

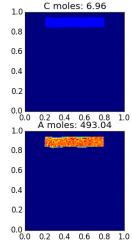
MADS

Model predicted drawdowns caused by the water-supply pumping



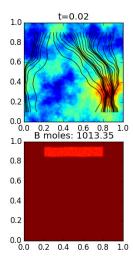
LANL Chromium plume transients

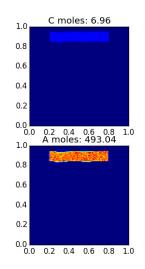



Decision Analyses	BIG-DT	LANL Chromium site	BIG-DT Analysis	MADS
0000000	00000	0000	00000	000

Chromium bio-remediation modeling (ChroTran)

Geochemical particle-based modeling


- ► A + B = C
- $\blacktriangleright X + Cr^{6+} = Cr^{3+}$
- Reduction of contaminant B by injecting A
- Reduction of contaminant A by interacting with B
- A instantaneously released (500 moles)
- B uniformly distributed in the aquifer (1000 moles)


Decision	Analyses			
00000000				

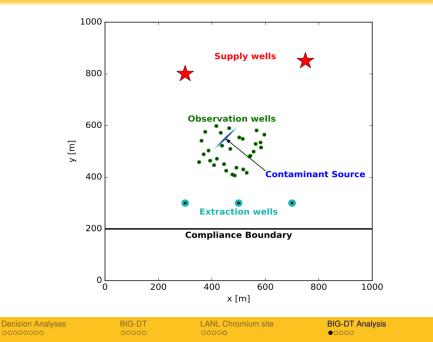
BIG-DT

LANL Chromium site

Geochemical particle-based modeling

 20% of A did not react

Decision Analyses

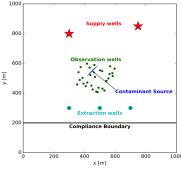

BIG-DT

LANL Chromium site

BIG-DT Analysis

MADS

Bayesian Information Gap Decision Analysis: Site map

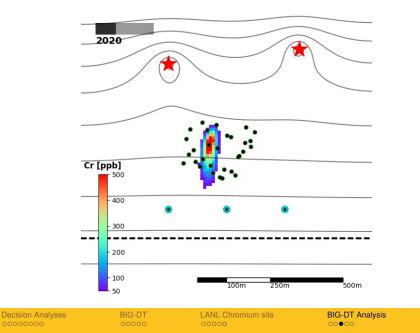

Bayesian Information Gap Decision Analysis: Setup

Unknowns:

- contaminant mass release, source location (x, y) and size
- hydraulic conductivity
- porosity
- dispersivity (longitudinal and transverse)
- contaminant transport parameters (mean mobile/immobile times of pore-scale mixing)

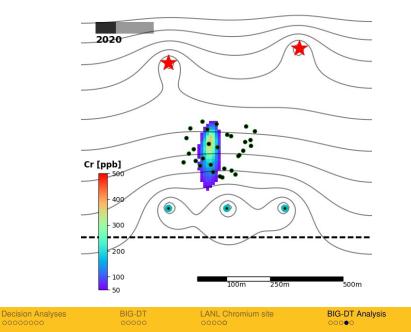
Knowns:

- well locations
- well pumping rates
- ambient hydraulic gradient
- location of compliance boundary
- hydraulic heads at the monitoring wells
- contaminant concentrations at the monitoring wells
- 30 monitoring wells
- 10 annual observations (heads/concentrations) per well (600 in total)

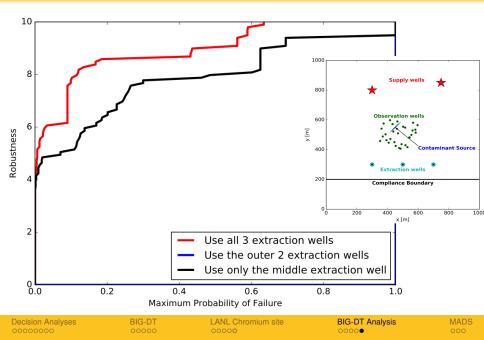


Decision Analyses

BIG-D


LANL Chromium site

Bayesian Information Gap Decision Analysis: No action


MADS

Bayesian Information Gap Decision Analysis: Pumping

MADS

Bayesian Information Gap Decision Analysis: Results

MADS: Model Analysis & Decision Support

- MADS is an open-source high-performance computational framework
- MADS implements a wide range of state-of-the-art and novel advanced computational techniques for big-data and complex model analyses (including machine learning).
- MADS provides tools for coupling with any existing physics simulator (FEHM, Amanzi, PFIoTran, ChroTran, etc.)
- MADS source code, examples, test problems, performance comparisons, and tutorials are available at:
 - http://mads.lanl.gov
 - http://madsjulia.github.io/Mads.jl

MADS has applied to perform various types of data- and model-based analyses related to the LANL chromium site:

- Contaminant source identifications
- Contaminant source characterizations (using models and machine learning)
- Monitoring network designs
- Optimization of injection/extraction well locations for hydraulic plume control
- Sensitivity analyses
- Uncertainty quantifications
- Evaluation of remediation scenarios
- Decision analyses

LANL data- and model-based analyses using MADS

- In the last 10 years, model analyses have accumulated more than 1,000 CPU-years of computational time utilizing simultaneously up to 4,096 processors on the LANL HPC clusters
- ... so far, all the blind model predictions (estimates/uncertainties) have been generally consistent with the new site observations

Decision Analyses

BIG-D

LANL Chromium site

